Multiscale modeling of oriented thermoplastic elastomers with lamellar morphology

نویسندگان

  • O. Lopez-Pamies
  • E. Chabert
  • P. Ponte Castañeda
چکیده

Thermoplastic elastomers (TPEs) are block copolymers made up of ‘‘hard’’ (glassy or crystalline) and ‘‘soft’’ (rubbery) blocks that self-organize into ‘‘domain’’ structures at a length scale of a few tens of nanometers. Under typical processing conditions, TPEs also develop a ‘‘polydomain’’ structure at the micron level that is similar to that of metal polycrystals. Therefore, from a continuum point of view, TPEs may be regarded as materials with heterogeneities at two different length scales. In this work, we propose a constitutive model for highly oriented, near-single-crystal TPEs with lamellar domain morphology. Based on small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) observations, we consider such materials to have a granular microstructure where the grains are made up of the same, perfect, lamellar structure (single crystal) with slightly different lamination directions (crystal orientations). Having identified the underlying morphology, the overall finite-deformation response of these materials is determined by means of a two-scale homogenization procedure. Interestingly, the model predictions indicate that the evolution of microstructure— especially the rotation of the layers—has a very significant, but subtle effect on the overall properties of near-single-crystal TPEs. In particular, for certain loading conditions—namely, for those with sufficiently large compressive deformations applied in the direction of the lamellae within the individual grains—the model becomes macroscopically unstable (i.e., it loses strong ellipticity). By keeping track of the evolution of the underlying microstructure, we find that such instabilities can be related to the development of ‘‘chevron’’ patterns. & 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Coarse-Graining of Thermoplastic Polyurethane Elastomer for Multiscale Modeling

The objective of this work is to develop a multiscale modeling tool of copolymers with long chains. We propose an enhanced coarse-graining method of thermoplastic polyurethane (TPU) with three beads. The proposed coarse-graining provides an accurate molecular modeling tool to keep the molecular interaction together with computational efficiency. The coarse-grained model with three beads is furt...

متن کامل

Damping Behavior of the Phenolic Based Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

Attempts have been made for the first time to produce a friction material with thermal sensitive modulus by the inclusion of combined plastic/rubber properties of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation for the purpose of increasing the damping behavior. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and elastic m...

متن کامل

Numerical Simulation of a Hybrid Nanocomposite Containing Ca-CO3 and Short Glass Fibers Subjected to Tensile Loading

The tensile properties of multiscale, hybrid, thermoplastic-based nanocomposites reinforced with nano-CaCO3 particles and micro–short glass fibers (SGF) were predicted by a two-step, three-dimensionalmodel using ANSYS finite element (FE) software. Cylindrical and cuboid representative volume elements were generated to obtain the effective behavior of the multiscale hybrid composites. In the fir...

متن کامل

Thermoplastic Elastomers with Photo-actuating Properties

This contribution reviews elastomeric materials with photo-actuation behavior with emphasis on thermoplastic elastomers and their composites. The principles of the photo-actuation and the main factors affecting the photo-actuation phenomena of thermoplastic elastomer materials are discussed in detail. The well-performing photoactuating systems involving both statistical and block copolymers-bas...

متن کامل

Nucleobase-functionalized ABC triblock copolymers: self-assembly of supramolecular architectures.

RAFT polymerization afforded acrylic ABC triblock copolymers with self-complementary nucleobase-functionalized external blocks and a low-Tg soft central block. ABC triblock copolymers self-assembled into well-defined lamellar microphase-separated morphologies for potential applications as thermoplastic elastomers. Complementary hydrogen bonding within the hard phase facilitated self-assembly an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008